#什么是数据资产运营#
通过社会数据、网络采集、机构数据、企业填报等数据源采集到企业数据,主要包括工商信息、股权信息、行政处罚、销售年报、司法信息、知识产权、法律诉讼、税务信息等。利用大数据技术等进行数据清洗、数据合并、数据挖掘、数据标准、安全脱敏、多维关联等数据治理操作,提高数据质量。利用机器学习技术学习专家打分,模拟专家对企业价值评价的决策过程,先建立评价模型,自动高效的对企业数据进行多维度、全方位解析,最终生成企业评价报告。
#数据洞察#
数据是产品量化指标,数据分析是产品运营极具战略意义的一环,做好埋点:
初级的数据埋点:在产品流程关键部位植相关统计代码,用来追踪每次用户的行为,统计关键流程的使用程度。
中级的数据埋点:在产品中植入多段代码追踪用户连续行为,建立用户模型来具体化用户在使用产品中的操作行为。
高级的数据埋点:与研发团队合作,通过数据埋点还原出用户画像及用户行为。
#数据运营流程#
1.制定产品目标
这是数据运营的起点,也是产品上线运营后进行评估的标准,以此形成闭环。制订目标绝不是拍脑袋出来的,可以根据行业发展,竞品分析,往年产品发展走势,产品转化规律等综合计算得出。产品目标的表现,往往是一个关键数字,例如在2019年12月,某产品日均登录用户数达到100万,制定目标常用SMART原则来衡量。
2. 定义产品数据指标
产品数据目标是反产品健康发展的某一个具体的数字,数据指标则是衡量该产品健康发展的多种数据。例如:
- PV, UV, VV, YV
- ARPU(Average Revenue Per User)
- Attrition rate
- PCU
- DAU、MAU、DAU/MAU
- Entry Event
- Exit Event
- K Factor
- Lifetime Network Value
- Re-Engagement
- Retention
我们根据产品目标来选择数据指标,例如网页产品,经常用PV、UV、崩失率、人均PV、停留时长等数据进行产品度量。定义产品指标体系,需要产品、开发等各个团队达成共识,数据指标的定义是清晰的,并且有据可查,不会引起数据解读的理解差异。
3. 构建产品数据指标体系
在数据指标提出的基础上,我们按照产品逻辑进行指标的归纳整理,使之条理化。例如一般的客户端产品,我们可以分为帐号体系、关系链、用户状态、用户沟通等四个方面进行数据指标的分类整理。
4. 提出产品数据需求
产品指标体系的建立不是一蹴而就的,产品经理根据产品发展的不同阶段,有所侧重的进行数据需求的提出,一般的公司都会有产品需求文档的模板,方便产品和数据上报开发、数据平台等部门同事沟通,进行数据建设。创业型中小企业,产品数据的需求提出到上报或许就是1-2人的事情,但同样建议做好数据文档的建设,例如数据指标的定义,数据计算逻辑等。
5. 上报数据
这个步骤的关键是数据通道的建设,原来在腾讯工作时候,没有体会到这个环节的艰辛,因为数据平台部门已经做了完备的数据通道搭建,开发按照一定规则上报就可以了。现在创业型公司,则是从上报通道开始进行建设,也让我得到更多锻炼提升的机会。其中很关键的一个环节,就是数据上报测试,曾经因为该环节的测试资源没到位,造成不必要的麻烦。
6-8 采集数据,数据存储,数据运算
每一步都是一门学问,例如采集数据涉及接口创建,要考虑数据字段的拓展性,数据采集过程中的ETL数据清洗流程,客户端数据上报的正确性校验等;数据存储与运算,在大数据时代,更是很有挑战性的技术活,这里也不细说。
9. 获取数据
就是产品经理,数据分析人员从数据系统获得数据的过程,常见的方式是数据报表和数据提取。报表的格式,一般会在数据需求阶段明确,尤其是有积累的公司,通常会有报表模板,照着填入指标就好了。强大一些的数据平台,则可以根据分析需要,自助的选择字段(表头)进行自助报表的配置和计算生成。
数据提取,在做产品运营中,是很常见的需求,例如提取某一批销量较好的商品及其相关字段,提取某一批指定条件的用户等。同样,功能比较完备的数据平台,会有数据自助提取系统,不能满足自助需求,则需要数据开发写脚本进行数据提取。
10. 观测和分析数据
这里主要是数据变化的监控和统计分析,通常我们会对数据进行自动化的日报表输出,并标识移动数据,数据的可视化输出很重要。常用的软件是EXCEL和SPSS,可以说是进行数据分析的基本技能,以后再分享个人在实际工作中对这两款软件的使用方法和技巧。
需要注意的是,在进行数据分析之前,先进行数据准确性的校验,判断这些数据是否是你想要的,例如从数据定义到上报逻辑,是否严格按照需求文档进行,数据的上报通道是否会有数据丢包的可能,建议进行原始数据的提取抽样分析判断数据准确性。数据解读在这个环节至关重要,同一份数据,由于产品熟悉度和分析经验的差异,解读结果也大不一样,因此产品分析人员,必须对产品和用户相当了解。
11. 产品评估与运营优化
这是数据运营闭环的终点,同时也是新的起点,数据报表绝不是摆设,也不是应付领导的提问,而是切实的为产品优化和运营的开展服务,正如产品人员的绩效,不仅仅是看产品项目是否按时完成,按时发布,更是要持续进行产品数据的观测分析,评估产品健康度,同时将积累的数据应用到产品设计和运营环节,例如亚马逊的个性化推荐产品,例如腾讯的圈子产品,例如淘宝的时光机产品等等。